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Comparison of Decision-Related Signals in Sensory and
Motor Preparatory Responses of Neurons in Area LIP

X S. Shushruth,* Mark Mazurek,*† and X Michael N. Shadlen
Zuckerman Mind Brain Behavior Institute, Kavli Institute, Howard Hughes Medical Institute, Department of Neuroscience, Columbia University,
New York, New York 10027

Neurons in the lateral intraparietal (LIP) area of Macaques exhibit both sensory and oculomotor preparatory responses. During percep-
tual decision making, the preparatory responses have been shown to track the state of the evolving evidence leading to the decision. The
sensory responses are known to reflect categorical properties of visual stimuli, but it is not known whether these responses also track
evolving evidence. We recorded neural responses from lateral intraparietal area of 2 female rhesus monkeys during a direction discrim-
ination task. We compared sensory and oculomotor-preparatory responses in the same neurons when either the discriminandum
(random dot motion) or an eye movement choice-target was in the neuron’s response field. The neural responses in both configurations
reflected the strength and direction of motion and were correlated with the animal’s choice, albeit more prominently when the choice-
target was in the response field. However, the variance and autocorrelation pattern of only the motor preparatory responses reflected the
process of evidence accumulation. Simulations suggest that the task related activity of sensory responses could be inherited through
lateral interactions with neurons that are carrying evidence accumulation signals in their motor-preparatory responses. The results are
consistent with the proposal that evolving decision processes are supported by persistent neural activity in the service of actions or
intentions, as opposed to high-order representations of stimulus properties.
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Introduction
The life of animals is a constant process of deciding what to do
next based on, among other things, the perception of the world

around them. In primates, perceptual decision making has evolved
into an efficient mechanism of translating the perceived state of the
world into possible motor actions (Cisek and Kalaska, 2005; Klaes
et al., 2011; Kubanek and Snyder, 2015). The motor system re-
ceives continuous access to evolving perceptual decisions and
maintains a graded level of preparedness based on the quality of
the incoming evidence (Gold and Shadlen, 2000; Selen et al.,
2012). This sensorimotor transformation is particularly evident in
the parietal and prefrontal association cortices, where neurons en-
coding the motor actions associated with the choices on offer also
represent evolving decisions (Kim and Shadlen, 1999; Roitman and
Shadlen, 2002; Bollimunta and Ditterich, 2012; Ding and Gold,
2012; de Lafuente et al., 2015). Thus, perceptual decision making can
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Significance Statement

Perceptual decision making is the process of choosing an appropriate motor action based on perceived sensory information.
Association areas of the cortex play an important role in this sensory-motor transformation. The neurons in these areas show both
sensory- and motor-related activity. We show here that, in the macaque parietal association area LIP, signatures of the process of
evidence accumulation that underlies the decisions are predominantly reflected in the motor-related activity. This finding sup-
ports the proposal that perceptual decision making is implemented in the brain as a process of choosing between available motor
actions rather than as a process of representing the properties of the sensory stimulus.
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be framed as a choice between available motor actions (Cisek, 2007;
Shadlen et al., 2008; Cisek and Kalaska, 2010).

Yet, perceptual decisions do not feel like they are about poten-
tial actions but about propositions or stimulus properties. In-
deed, one can make a decision without knowledge of the action
that will be required to act on it. In such situations, one might
expect neural circuits involved in motor planning to be irrelevant
to the decision process (Gold and Shadlen, 2003). However, it has
been shown that, even then, neurons in the parietal association
areas carry a representation of the properties of the stimulus that
will be relevant for future actions (Freedman and Assad, 2006;
Bennur and Gold, 2011; Goodwin et al., 2012). It is possible that
such “abstract” representations of decision relevant information,
independent of the possible motor actions, coexist with representa-
tions of decisions as intended actions (Freedman and Assad, 2011).
Whether such simultaneous representations exist in the same
association area has not been investigated before. Consequently,
it is also not known whether such abstract representations play a
role in the decision-making process.

We used the random-dot motion (RDM) direction discrimi-
nation task (Newsome et al., 1989) to investigate these questions.
In this task, the animals discern the net direction of a stochastic
motion stimulus and report their decision by making a saccade to
one of two choice targets that is along the direction of the perceived
motion. This task is particularly well suited for our purposes. First,
optimal performance on this task demands integration of motion
evidence over time. This prolonged deliberation time allows
characterization of whether a neural population is participating
in the process of evidence accumulation or not. Second, there
exists a theoretical framework, bounded accumulation of noisy
evidence to a decision threshold (also known as drift diffusion)
(Smith and Ratcliff, 2004; Palmer et al., 2005), which accounts
quantitatively for the speed and accuracy of decisions in this task.
Third, it has been shown that responses of neurons in several
areas of the brain involved in planning saccadic eye movements
represent the evolving decision in this task (Shadlen and New-
some, 1996; Horwitz and Newsome, 1999; Kim and Shadlen,
1999; Ding and Gold, 2010, 2012).

We focused on the parietal sensorimotor association area LIP.
Many neurons in LIP respond to both the presence of a sensory
stimulus in, and to a planned saccade into, their response fields
(RFs) (Barash et al., 1991b). We recorded the responses of the
same set of neurons during the RDM discrimination task in two
configurations: when the RF contained the RDM stimulus and
when it contained one of the choice targets. We show that the
neurons represent the moment-by-moment accumulation of
sensory evidence only in the latter configuration, that is, when
they are involved in the planning of the motor action required to
report the choice.

Materials and Methods
All training, surgery, and experimental procedures were conducted in
accordance with the National Institutes of Health Guide for the care and
use of laboratory animals and were approved by the University of Wash-
ington Institutional Animal Care and Use Committee (IACUC Protocol
#2896-01).

Experimental design and statistical analysis
Neural recordings. We recorded activity of 49 well-isolated single units
from the ventral subdivision of area LIP (LIPv, Lewis and Van Essen,
2000) of two adult female rhesus monkeys (Macaca mulatta) trained on
the RDM direction discrimination task. MRI was used to localize LIPv
and to target recording electrodes. Within this putative LIPv, we screened
for neurons that had both visual responses and spatially selective persis-

tent activity. The persistent activity was assessed using a memory-guided
saccade task (Gnadt and Andersen, 1988). In this task, a target is flashed
in the periphery while the monkey fixates on a central spot. The monkey
has to remember the location of the target and execute a saccade to that
location when instructed. The RF of each neuron was identified as the
region of visual space that elicited the highest activity during the interval
between the target flash and the eventual saccade. For the majority of
neurons in LIPv, this region also elicits the strongest visual response
(Platt and Glimcher, 1998). During the recording sessions, visual and
persistent activities were assessed qualitatively. We confirmed these
properties by analyzing the following responses acquired during the ex-
periment: (1) the response to RDM presented in the RF, 100 –300 ms
after onset and (2) delay period activity, 100 –300 ms before a saccade
into the RF. We confirmed that both proxies were greater than baseline
activity, 0 –200 ms before the appearance of a visual stimulus in the RF.
For two neurons, post hoc analysis revealed that, in the Target-in-RF
condition, the persistent response was higher for the target that we
had initially considered to be out of the RF. The sensory responses
were equally strong for both locations. We elected to not recode the
target IDs ex post facto. These are the two significant points with �2 �
0 in Figure 4A.

Behavioral task. The choice-reaction time direction discrimination
task is similar to previous studies (Roitman and Shadlen, 2002). The
animal initiates a trial by fixating on a point (fixation point) presented on
an otherwise black screen. Two choice-targets then appear on the screen.
After a variable delay (drawn from an exponential distribution of mean
750 ms), the RDM stimulus is displayed in an imaginary aperture (i.e.,
invisible borders) of 5°-9° diameter at a third location. The first three
frames of the stimulus consist of white dots randomly plotted at a density
of 16.7 dots � deg �2 � s �1. From the fourth frame, each dot from three
frames before is replotted, either displaced in one direction along the axis
connecting the two targets, or at a random location. The probability with
which a dot is displaced in the direction of one of the targets determines
the stimulus strength (coherence); and on each trial, this was randomly
chosen from the set C � [0, 0.032, 0.064, 0.128, 0.256, 0.512]. The mo-
tion strengths and the two directions were randomly interleaved. Impor-
tantly, the monkey was allowed to view the stimulus as long as it wanted
and indicate the perceived direction of motion with a saccade to the
target that lay in that direction to obtain a liquid reward. Rewards were
given randomly ( p � 0.5) for the 0% coherence motion condition.

During recording from each isolated neuron, the choice-targets and
the RDM were presented in two configurations (see Fig. 1). In the Target-
in-RF configuration, one of the choice-targets overlay the neuronal RF.
In the RDM-in-RF configuration, the RDM stimulus was presented in
the RF. The two configurations were alternated in blocks (median block
size 90, interquartile range 60 –120). The order of blocks was randomized
across neurons (23 started with Target-in-RF blocks; 26 with RDM-
in-RF blocks), and each neuron was recorded with at least one block of
trials in each configuration. For 33 of the neurons, the targets and the dot
stimuli were placed 120° apart on an imaginary circle (see Fig. 1). For the
remaining 16 neurons (in 1 monkey), the targets and the dot stimulus
were aligned linearly in both configurations. In this arrangement, the
targets were aligned to the direction of RDM when the RDM was in RF.
The whole alignment was rotated close to 90° and translated to situate a
target in the RF in the other configuration (Fig. 1-1, available at https://
doi.org/10.1523/JNEUROSCI.0668-18.2018.f1-1). Because the direc-
tions of motion varied across sessions, we adopted the following
conventions. In the Target-in-RF configuration, the direction of motion
toward the target in the RF for each neuron was considered the “positive”
direction. In the RDM-in-RF configuration, the positive direction was
assigned post hoc from the neural recordings: the direction of motion that
elicited the higher mean response.

All statistical tests are described in the pertinent sections of Materials
and Methods.

Analyses of behavioral data
The accuracy and reaction time (RT) of the monkeys were fit by a
bounded evidence accumulation model (Shadlen et al., 2006). In the
parsimonious application of this model used here, the instantaneous
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evidence about motion at each time step is assumed to arise from a
normal distribution with variance �t and mean ��C � C0��t, where
C is the signed motion coherence, C0 is a bias, and � is a scaling param-
eter. This instantaneous evidence is accumulated over time, and the de-
cision process terminates when the accumulated evidence reaches one of
the bounds �B, leading to the choice of one of the targets. The mean RT
is the expectation of the time taken for the accumulated evidence to reach
the bound plus a constant, the nondecision time tnd comprising sensory
and motor delays. To account for asymmetric RTs in some configura-
tions, we used two different nondecision times (tnd1 and tnd2) for the two
target choices. In this framework, the mean RT for the correct choices
(i.e., choices consistent with the sign of the drift rate, �	C � C0
) is
described by the following:

RT �
B

k�C � C0�
tanh ���C � C0�B� � tnd (1)

Further, the choice distributions are described by the following:

P� � 	1 � exp��2��C � C0�B�
�1 (2)

where P� is the probability of choosing the target consistent with the
“positive” direction of motion. We fit Equation 1 to the RT data and used
the fitted parameters to predict the choice functions (Eq. 2) (Gold and
Shadlen, 2002; Kang et al., 2017). We first established an estimate of C0

from a logistic fit of the choices. Because the parsimonious model ex-
plains only the RT when the choice is consistent with the sign of the drift
rate (Ratcliff and Rouder, 1998), we used the mean RT for positive
choices at C � C0 � 0 and negative choices for C � C0 � 0. We then fit �,
B, tnd1, and tnd2 and used the values of � and B in Equation 2 to establish
predictions of choice (see Fig. 2).

We evaluated the fidelity of these predictions by comparing the pre-
dictions with a logistic regression fit of the choice data. To demonstrate
that these predictions were not a trivial result of monotonic ordering
of RTs by motion strength, we compared them with predictions from
10,000 pseudorandomly generated RT versus coherence functions that
preserved the order of RTs. To generate these functions, we retained the
observed RTs for the minimum (�51.2%), maximum (51.2%), and 0%
coherences and used ordered random values within this range for the
other coherences. We quantified the magnitude of the perturbation as
the average of the percentage change from the observed RT at each co-
herence. We then performed the steps above to fit these perturbed RTs to
establish a new predicted choice function. We estimated the probability
of obtaining a predicted choice function as good or better that the ones
derived from data as a function of the size of the perturbation. We report
the minimal perturbation at which p � 0.01.

To obtain a more precise estimate of decision times, we fit an elabo-
rated version of the bounded evidence accumulation model (Fig. 2-1,
available at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f2-1) si-
multaneously to both choices and RTs (including both correct and error
trials). In this model, the decision bounds ( B) collapse with time (t) such
that:

B�t� � B0 � B1�t � Bdel�
2 for t � Bdel (3)

where B0 is initial bound height, B1 is the rate of collapse, and Bdel is the
delay to onset of collapse. The nondecision time is modeled as a normal
distribution with mean tnd and SD �tnd. A separate nondecision time was
used for decisions terminating at each of the two bounds. This model was
fit by maximizing the log likelihood of the observed responses (choice
and RT) on each trial to numerical solutions for the probability densities
of terminating at �B(t) (Churchland et al., 2008; Kang et al., 2017). The
mean decision times were obtained from these fits and their SE estimated
from fitting the model to resampled trials (i.e., the SD of the means from
100 iterations).

Analyses of neural data
Population responses were computed as the average of all trials from all
neurons after smoothing each trial with a 75-ms-wide boxcar filter (see
Fig. 3A–D). The smoothing was only for visualization, and all analyses
were conducted on the raw spike data (1 ms resolution). To visualize the

coherence-dependent buildup of activity (see Fig. 3 A, C, insets), we de-
trended individual neuronal responses by subtracting the average re-
sponses across all coherences for the same neuron (separately for each
task configuration).

We compared the strength of direction selectivity in our neural pop-
ulation with that reported by Fanini and Assad (2009) using their direc-
tion selectivity index (DI) as follows:

DI �
��n

Rnei	n�

�n
Rn

(4)

where Rn is the mean response to nth direction 	n in the time window 190
ms after RDM onset to 100 ms before saccade. DI was computed from
responses to the 51.2% coherence motion trials in the two directions (

radians apart). We compared the distribution of the DI values in our
population with those reported by Fanini and Assad (2009, their Fig. 3A),
using a rank sum test (see Fig. 3E).

We used responses at the two strongest motion strengths (�51.2%
coherence) to estimate the latency from motion onset to the time that
direction selectivity was first apparent in a given neural population (see
Fig. 3F ). We averaged the responses in 40 ms bins on each trial at these
coherences and derived receiver operating characteristics (ROC) from
these response distributions at each time bin. The area under the ROC
denotes the probability of the neuron responding more to the positive
direction of motion. For each time bin, we applied a Wilcoxon rank sum
test and estimated the response latency as the first of three successive bins
that met statistical significance ( p � 0.05). We used a bootstrap proce-
dure to estimate the distribution of latencies under the two task config-
urations. For each configuration, we resampled trials with replacement,
matching the number of trials in the original datasets, and obtained a
latency using the same procedure as on the actual data. We repeated this
procedure 1000 times for each configuration. The medians of these dis-
tributions recapitulated the latency estimated from the data (180 and 190
ms for the Target-in-RF and RDM-in-RF, respectively). We report the p
value of a rank sum test (two-tailed) using the bootstrap-derived distri-
butions to evaluate the null hypothesis that the latencies are the same for
the two configurations. We obtained the same result by sampling neu-
rons (instead of trials), with replacement. We used a similar area under
ROC metric to estimate the degree of overlap between the responses
to the two directions of motion in the RDM-in-RF configuration. Mean
responses in a 200 ms time bin (100 –300 ms before the saccade) was used
for this estimation. We report the population average of this metric as in
Swaminathan and Freedman (2012).

We quantified the effect of motion strength on the rate of increase of
neural response (“buildup rate”) during the decision-making epoch as
the slope of the response in the time window 180 –380 ms after stimulus
onset (see Fig. 3G). The start of the time window was chosen based on the
latency of the direction selectivity of the responses. To exclude presacca-
dic activity, we discarded from each trial, the spikes occurring up to 100
ms before saccade onset. We computed by least-squares method, the
slope for each neuron at each coherence from the mean detrended re-
sponse in 10 ms time bins in the aforementioned time window. We then
tested whether these buildup rates scaled with coherence across the pop-
ulation in each stimulus configuration by fitting a linear model regress-
ing these buildup rates against signed coherence. We confirmed that the
trends shown in Figure 3G were preserved when the analysis was per-
formed using weighted regression.

Leverage of neural activity on behavior. We measured the leverage of
neural activity on the animal’s choice in two ways (see Fig. 4). First, we fit
the monkey’s choices with logistic regression as follows:

P� � 	1 � exp � ��0 � �1C � �2R�
�1 (5)

where P� is the probability of choosing the “positive” direction target, C
is signed coherence, and R is the z-scored mean neural response of each
trial in the time window 100 –300 ms before saccade (standardized sep-
arately for each configuration in each neuron). If the variations in firing
rate of the neurons have leverage over choice even when the effect of
motion coherence is accounted for, then �2  0. We compared �2 across
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configurations with a signed rank test on their absolute values. We also
quantified the additional leverage of the neural responses on choice be-
yond that of the motion strength, by measuring the difference in the
deviance of the full model and the model without the R term (�). Com-
parisons of � provided similar results to the comparisons of the �2 term
that are presented in the results.

Second, we quantified the trial-by-trial correlations between neuronal
response and the animal’s choice in the 0% coherence trials by comput-
ing “choice probability” (CP) (Britten et al., 1996). For each neuron, we
computed the mean responses on the 0% coherence trials in a time
window 100 –300 ms preceding the saccade. The trials were separated
into two groups based on the animal’s choice. We used the distributions
of responses from the two groups to calculate the area under the ROC,
termed the CP. We evaluated the null hypothesis that �CP�0.5� � 0 using
a permutation test. We permuted the union of responses from both
groups and assigned them randomly to the two choices (matching the
number of trials in each group) and computed the CP. By repeating this
procedure 2000 times, we established the distribution of �CP�0.5� under
H0 and report the p value as the area to the right of the observed CP
minus 0.5.

To evaluate whether the CPs from the two configurations were differ-
ent, we first converted responses to z scores (by neuron and configura-
tion) and then combined the z scores across neurons. We then computed
two CPs, as above, for the two configurations. To evaluate the null hy-
pothesis that the two CPs are equal, we performed another permutation
test, this time preserving the association with choice but permuting the
association with configuration. We obtained the distribution of the dif-
ference in CP (��CP�) under H0 from 2000 repetitions of the permutation
procedure and report the p value as the area of this distribution that is
greater than the observed ��CP� from the data.

We also quantified the correlation between the buildup rates and RT.
We used trials in which the monkey chose the “positive” direction target,
including all such trials at 0% motion strength and only correct trials at
positive motion strengths. For each trial, we computed the slope of the
response between 180 and 420 ms after RDM onset (using 40 ms time
bins) from the detrended responses. To remove the effect of coherence
on RT, we standardized (i.e., z-scored) both the RTs and the buildup
rates within each coherence and computed the correlation between
them.

Variance and correlation analysis. To evaluate whether the neuronal
firing rates on individual trials during the decision-making epoch reflect
a process of accumulation of noisy evidence, we analyzed the pattern of
variance and autocorrelation of the responses (Churchland et al., 2011;
de Lafuente et al., 2015). We were interested in the variance attributable
to such an accumulation process. For the i th time bin, this variance
(s�Ni�

2 ) is the fraction of the total measured variance (sNi

2 ) remaining after
accounting for the point process variance (PPV), that is, the variance
expected even if the underlying rates were constant. We refer to s�Ni�

2 ,
which is a variance of a conditional expectation of the counts, hence the
variance of the underlying rate, simply as “variance” in the main text.
Assuming the PPV is proportional to the mean count:

s�Ni�
2 � sNi

2 � � � Ni � (6)

where � is a constant that must be estimated.
Because our goal was to compare how well the firing rates conform to

a diffusion process, we allowed � to be a free parameter and fit it to obtain
the best conformity to the autocorrelation pattern for a running sum of
independent, identically distributed random numbers. Recall that the
variance of the sum of n independent random samples of variance � 2 is
n� 2. If the sum is extended for another m samples, the variance is (n �
m)� 2. The sum out to n shares a fraction of this variance: n/(n � m). This
is the R 2, and its square root is the correlation, . So, for an unbounded
diffusion process, the correlation between the i th and j th time steps is as
follows:

ij � �min�i, j�

max�i, j�
(7)

For six time bins, the 6 � 6 correlation matrix contains 15 unique values
of ij.

We characterized the variance and autocorrelation from six 60 ms time
bins between 180 and 540 ms after stimulus onset, ignoring any time bins
that extended to within 100 ms of the saccade. To pool data across neu-
rons, we used the residuals for each trial as follows. The mean response of
a trial in each time bin was subtracted from the mean of the responses
from all the trials for that neuron for the same signed coherence in that
time bin. We computed the covariance matrix from the residuals for the
six time bins.

We used an initial guess for � to calculate the variance attributable to
the diffusion process (s�Ni�

2 , Eq. 6) and substituted the raw variances for
the diagonal of the covariance matrix. The correlation was derived from
this covariance matrix by dividing each term by √�s�Ni�

2 s�Nj�
2 �. We used

Nelder-Mead simplex method (MATLAB function fminsearch) to find
the � that minimized the sum of squares of the difference between the 15
z-transformed calculated correlation (rij) and the z-transformed theoret-
ically predicted correlation (ij). The values of � were not constrained to
be the same in the Target-in-RF (� � 0.42) and RDM-in-RF (� � 0.39)
configurations.

We report the variance (s�Ni�
2 ) in Figure 5 using the fitted � values and

estimated the SEs from a bootstrap. We evaluated the effect of time on the
variance using least-squares regression. We also performed these analy-
ses over a range of plausible values of � and confirmed that only the
absolute values of the variances differed, whereas the shape of the vari-
ance function over time was unaffected. We similarly computed the vari-
ance and its SE for time bins aligned to the onset of the saccade.

We used a combination of Monte Carlo methods and parametric sta-
tistical tests to analyze the decline in variance preceding the saccade. For
trials in which the monkey chose the target in the RF, we compared the
variance in the two time bins immediately preceding the saccade, using
the bootstrap-derived SEs. We report a t test. We made the same com-
parison for each of the other conditions: (1) unchosen Target-in-RF,
(2) preferred direction choice with RDM-in-RF, and (3) nonpreferred
direction choice with RDM-in-RF. None was significant ( p � 0.05). We
do not report these tests in the results and instead compare directly the
estimates of variance decline in the four conditions. To do this, we com-
puted the fractional difference in variance in the two time bins and esti-
mated its SE using the same bootstrap. We compared this difference
statistic in the four conditions using ANOVA. We report the maximum p
value for the comparison of the chosen Target-in-RF condition with the
other three conditions, using Tukey’s test.

To quantify how well the measured correlation values conform to
theoretical predictions, we formed a sum of square statistic from the 15
pairs of observed and theoretical correlations (after Fisher-z transforma-
tion; see Fig. 6 D, E). We used a bootstrap procedure to estimate the
distribution of this statistic by sampling with replacement from the data
and following the steps above (100 iterations). We used a Kolmogorov–
Smirnov test to determine the significance of the difference between the
distribution of the sum of square statistics between the RDM-in-RF and
the Target-in-RF configurations.

Model
We simulated the spike rates of three neural populations during the RDM
epoch: one population with the RDM in its RF and two with targets in
their RF. We devised two models that could account for direction selec-
tivity seen in the RDM-in-RF population: (1) selectivity is inherited by
means of divisive suppression from the Target-in-RF populations that
are accumulating evidence (divisive suppression model), and (2) selec-
tivity arises from an evidence accumulation process transpiring in the
RDM-in-RF population itself ( parallel diffusion model). Each model
was implemented in two stages. In the first stage, our goal was to approx-
imate the pattern of mean responses seen in the data. The models specify
the predicted autocorrelation matrices for both neural populations. In
the second stage, we compared the two models by assessing their capacity
to explain the autocorrelation matrices derived from the neural data.

In the divisive suppression model (see Fig. 7A), the RDM-in-RF pop-
ulation was modeled as having an exponential rise in firing rate starting
50 ms after RDM onset and peaking at 130 ms (see Fig. 7C). The peak
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response varied from trial to trial, independent of RDM direction. The
population then maintained the peak response through the end of the
simulated epoch (540 ms after RDM onset). The two Target-in-RF pop-
ulations were modeled as maintaining a steady response (R0) up to 180
ms after RDM onset and then following drift diffusion dynamics (see Fig.
7B). The responses S in the dynamic epoch evolved at each time step �t as
follows:

�S � K�t � N�0, ���t� (8)

Incorporating a deterministic drift component (K ) and a diffusion com-
ponent (N), a normally distributed random number with mean zero and
SD ���t. The drift component was positive for one target population
(T1) and negative for the other (T2). The parameter K was chosen so that
the drift rate in the T1 population of the model after implementation of
divisive suppression (see below, Eq. 9) matched the observed buildup of
the neural response for the Target-in-RF neural population at the 25.6%
coherence condition (see Fig. 7F, solid line). The parameter � was chosen
such that the slope of the variance, after incorporation of suppression,
mimicked that seen in data (see Fig. 5A, blue curve). For values of model
parameters, see Table 1 .

We simulated 10,000 trials and implemented divisive suppression be-
tween the three populations of the following form:

R1 �
R1��t�

1 � �21R2��t � �t� � �31R3��t � �t�
(9)

where R� and R denote the unsuppressed and suppressed responses, re-
spectively, of the population indicated by the subscript, and �ij is the
weight of the influence of the i th population on the j th. The suppressed
responses at each time point (t) was computed based on the unsup-
pressed responses in the time window preceding it by �t � 10 ms.

We first estimated the suppression of two target populations on each
other (�T1T2 and �T2T1) from the peak and steady-state responses of the
neurons to the appearance of a target in their RF. We then estimated
the weight of suppressive influence of the RDM-in-RF population on the
Target-in-RF populations (�DTx, x � �1, 2�) using the firing rates at the
trough of the response dip following the onset of RDM (see Fig. 7F,
arrow) (Bollimunta and Ditterich, 2012). The influences of the two
Target-in-RF populations on the RDM-in-RF population �TxD were ad-
justed around �DTx to mimic the observed separation in mean responses
of the RDM-in-RF population to the two directions of motion. Such
asymmetry of the influence of the two Target-in-RF populations might
arise from the different spatial relationship they might have with the
RDM-in-RF population. Similar asymmetries are likely for the other
pairs of �, too, but we set them to be equal here to simplify the model. We
used the weights of suppression to estimate the underlying unsuppressed
mean responses of each of the populations (see Fig. 7 B, C).

In the parallel diffusion model, we implemented drift diffusion dy-
namics in the RDM-in-RF population as well as in the Target-in-RF
population, and the populations had no suppressive interactions (see Fig.
9). The drift component in the RDM-in-RF population (K in Eq. 8) was
set to mimic the observed separation of responses to the two directions of
motion in the data (see Fig. 7G). The scaling factor for the variance of the

diffusion component (� in Eq. 8) was adjusted to mimic the observed
slope of the variance of the responses in the RDM-in-RF configuration
(see Fig. 5A, green curve). Because of the absence of divisive interactions
in this model, K and � for the Target-in-RF populations were recom-
puted to bring them in agreement with the data (Table 1).

Up to here, all parameters were established from the neural data, al-
lowing both models to approximate the mean responses in the data. To
compare how well the two models can account for the pattern of auto-
correlation in the data, we needed to consider other possible sources of
variance and autocorrelation. In both models, the variance of the nondi-
rectional sensory response of the RDM-in-RF populations was incorpo-
rated as a free parameter VRDM. This parameter was constrained to not
exceed the variance observed at the peak of the sensory neural response in
the RDM-in-RF configuration. For the divisive suppression model, our
hypothesis is that the noisiness of the suppression causes the autocorre-
lation pattern of the RDM-in-RF population to deviate from theoretical
predictions. We instantiated this noisy process by corrupting the inter-
action signals so that they were not perfect replicas of the responses of the
three populations in the model (see Fig. 7 B, C, insets). This noise term
was proportional to the square root of the response. We set the scaling
term � � 5 to represent a modest amount of noise (R 2 � 0.81 for the
diffusion paths and their corrupted versions).

We attempted to achieve the best possible fit to the 30 correlations
observed in the data in the two configurations (15 unique values each for
the Target-in-RF and RDM-in-RF configuration) under each of the
models. The models give rise to predicted correlations in the Target-
in-RF and RDM-in-RF populations (varying with the free parameter
VRDM). As above, we allow for uncertainty in the PPV in the data (� in Eq.
6). So we compute the correlations in the neural data with two additional
degrees of freedom (parameters, �RDM and �Tar for the RDM-in-RF and
Target-in-RF configurations, respectively). We estimated the set of pa-
rameters that maximized the log likelihood (L̂) of the 30 correlations in
the data (Fisher z-transformed) under the model predictions. It was not
possible to fit � and �RDM simultaneously without imposing additional
constraints (e.g., �RDM � �Tar). Instead, we fixed � to establish a mod-
est perturbation of the interaction signals, as noted above. This is the
model illustrated in Figures 7 and 8 (parameters in Table 1). We
compared models using the difference in Bayesian Information Crite-
rion (BIC � � 2L̂ � k ln�n�, where k is the number of free parame-
ters and n is the number of data points). We explored a range of � to
confirm that the suppression model is favored even with subtle noise
perturbation (e.g., �BIC � 100 for � � 1, R 2 � 0.99). BICs were calcu-
lated by conservatively assuming 4 df for the divisive suppression model
(�RDM, �Tar, �, VRDM) and just 2 df for the parallel diffusion model
(�RDM, �Tar) because � should be regarded as a free parameter and the
best fit of the parallel diffusion model assigns VRDM � 0. We also fit to a
model with � as a free parameter under the constraint �RDM � �Tar. This
implementation also favors the suppressive interaction model (�BIC �
6 � 10 3; best fitting � � 8.2). The implementation of VRDM introduces
autocorrelation of the rate that spans the duration of the analysis epoch
(360 ms). Parametrization of the sensory responses with exponentially
decreasing autocorrelation did not provide a significantly better fit to the
data in either model.

Results
We recorded from 49 well-isolated single neurons in area LIP
from 2 monkeys (28 neurons from Monkey N and 21 neurons
from Monkey B) as they decided the net direction of a noisy RDM
stimulus. On each trial, two choice targets indicated the two di-
rections to be discriminated (e.g., up vs down). The monkeys
reported their decision by making a saccade to the choice target
along the perceived direction of motion. They were free to indi-
cate their decision whenever ready, thus providing a measure of
RT. The monkeys performed the task with the RDM and the
targets arranged in two configurations (Fig. 1). In the Target-
in-RF configuration, one of the choice targets was placed in the
RF of the neuron under study. In the RDM-in-RF configuration,
the RDM was placed in the RF. In this way, we obtained data from

Table 1. Parameter values for simulations

Parameter Divisive suppression model Parallel diffusion model

K (T) 80.4 52.8
� (T) 29.8 23.7
K (D) NA 25.0
� (D) NA 9.6
�T2T1 � �T1T2 2 � 10 �3 NA
�DT1 � �DT2 4 � 10 �3 NA
�T1D 6 � 10 �3 NA
�T2D 1 � 10 �3 NA
�RDM 0.38 0.39
�Tar 0.43 0.43
VRDM 4.17 0
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the same LIP neuron when it belonged either to the pool repre-
senting the RDM stimulus or to one of the two pools representing
the choice targets.

We first establish that the animals integrate motion informa-
tion over 100s of milliseconds to make their choices in both task
configurations. This prolonged deliberation time offers a window
in which to interrogate how the neural responses relate to the
process of decision formation. We show that the firing rates of
neurons represent the state of the accumulated evidence only
when the neurons belong to a pool representing the targets.

Behavior in the two task configurations
The behavior of both monkeys exhibited an orderly dependence
on the strength of the RDM in both task configurations. They

took longer to report their decision when the motion strength
was weaker (Fig. 2A–D), and their decisions were less accurate
(Fig. 2E–H). The systematic relationship between RT and accu-
racy is well described by the accumulation of noisy evidence to a
threshold, which determines both the time it takes to make a
decision and which alternative the monkey chooses (Gold and
Shadlen, 2002; Smith and Ratcliff, 2004). We support this asser-
tion by fitting the RTs to a bounded evidence accumulation
model and then using the fitted parameters to predict the choices
(Shadlen and Kiani, 2013; Kang et al., 2017). Specifically, the
curves in the top row of Figure 2 are fits to a parsimonious sym-
metrically bounded drift diffusion model, which uses four pa-
rameters to account for the effect of motion strength on the mean

...

...

...

...

Target-in-RF 

RDM-in-RF 

Reaction
 Time 

RF of 
neuron 

Figure 1. Behavioral task configurations. The monkey fixates at an instructed location (x) and then two choice targets (red dots) appear in one of two configurations: (1) Target-in-RF: One of the
targets is situated in the RF of the neuron being recorded from. (2) RDM-in-RF: Both targets are situated outside the RF. In the next step, the RDM is presented either inside (RDM-in-RF) or outside
the RF (Target-in-RF). The monkey is free to report its decision any time after the appearance of the RDM by making a saccade to one of the targets. The alignment of the RDM and targets used in 16
sessions was slightly different and is shown in Figure 1-1 (available at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f1-1).
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Figure 2. Predicting choices from diffusion-to-bound model fit to RTs. A–D, RTs of the two monkeys as a function of motion strength in the two task configurations (for convention on sign of
motion strength, see Materials and Methods). Solid lines indicate the fits of a diffusion-to-bound model. Data include the trials at 0% motion strength in which the monkey chose the target
consistent with its bias (established from logistic fits to the choice data) and correct trials at other motion strengths. E–H, The probability the monkey chooses the target consistent with positive
motion direction, plotted as a function of motion strength. Dashed lines indicate predictions from the corresponding fits of the RTs. Gray lines indicate fits to the choice data (logistic regression). The
data were also fit with a more elaborate diffusion-to-bound model. The fits are shown in Figure 2-1 (available at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f2-1).
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RT for correct choices (Eq. 1; see Materials and Methods). Two of
the parameters (the bound height, �B; and the sensitivity coeffi-
cient, �) establish predictions for the proportion of choices as a
function of motion strength (Eq. 2). Figure 2 (bottom, dashed
curves) depicts these predictions. They are only slightly worse than
logistic fits to the choice data themselves (gray curves), which are
unconstrained by RT. To quantify the “goodness of prediction,” we
compared the model predictions to those obtained from random
perturbations of the mean RTs, which preserve their orderly de-
pendence on motion strength. Small perturbations of the RT
(mean 7.5%, range 1%–12% or equivalently, mean 48 ms, range
7–73 ms) are sufficient to produce substantially poorer predictions
(p � 0.01). The fidelity of the predictions supports the assertion that
the choices result from the same process of bounded evidence accu-
mulation that explains the decision times. Importantly, this conclu-
sion holds for both stimulus configurations.

From this exercise, we conclude that the decision times (i.e.,
RT � the nondecision time) estimated from diffusion model fits
can be used to identify an epoch in which noisy evidence was inte-
grated to make the decision. To obtain more refined estimates of the
integration times for the different task configurations, we fit a more
elaborate bounded diffusion model (Fig. 2-1, available at https://
doi.org/10.1523/JNEUROSCI.0668-18.2018.f2-1; for details, see
Materials and Methods; for fit parameters, see Table 2). The small
differences in RTs between the two configurations for Monkey N
were accounted for by the nondecision time parameter. For
Monkey B, a combination of increased sensitivity and decreased
bound height contributed to the faster RTs in the RDM-in-RF
configuration. Importantly, the fits established that both mon-
keys integrated evidence over hundreds of milliseconds in each
configuration.

LIP neuronal responses in the two task configurations
Neurons in area LIP can exhibit sensory-, memory-, and saccade-
related responses (Gnadt and Andersen, 1988; Barash et al., 1991a).
For example, in a task where a monkey must remember a visually
cued location and make a delayed saccade to it, LIP neurons can
show the following: (1) a short latency response to the visual cue
if it appears in the RF, (2) a persistently elevated response during
the delay period, and (3) a burst of activity preceding a saccade to
the remembered location. Not all LIP neurons exhibit all three
types of responses. Because our goal was to compare the decision-
related activity in the same neurons when they belonged to the
pool representing the sensory information and when they be-
longed to the pool involved in planning the motor action, we
recorded from neurons that responded to visual stimuli in their
RF and also showed persistent activity in association with saccadic
motor planning. Each of our neurons increased their responses
above baseline to the appearance of a visual stimulus in their RF

(responses after RDM onset: median 5 SD above baseline, inter-
quartile range 2.7–7.7). The strength of this sensory response was
comparable with the highest responses observed during the delay
period (median 4.3 SD above baseline, interquartile range 2.3–
9.2, p � 0.49, Kolmogorov–Smirnov test).

During the direction discrimination epoch, the pattern of ac-
tivity of the recorded neurons varied according to which pool
they belonged. When the neurons belonged to a pool with one of
the targets in the RF, the responses largely recapitulated ob-
servations from earlier reports (e.g., Roitman and Shadlen,
2002; Churchland et al., 2008). Figure 3 shows the average pop-
ulation response of all neurons in the Target-in-RF configuration,
aligned to either the onset of RDM (Fig. 3A) or to the saccade (Fig.
3B). The response was elevated before the onset of the RDM
reflecting the presence of a choice target in the RF of the neurons.
Following motion onset, there was a stereotyped dip in activity
before the responses began to separate by motion strength. The
evolution, beginning �180 ms after stimulus onset, is best appre-
ciated in the detrended responses (Fig. 3A, inset). These features
and those next described were evident in both of the monkeys,
shown individually in Fig. 3-1 (available at https://doi.org/
10.1523/JNEUROSCI.0668-18.2018.f3-1) and Fig. 3-2 (available
at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f3-2).

The same neurons also exhibited differential responses to the
two directions of motion being discriminated when they be-
longed to the pool representing the RDM. To combine responses
across the population in this task configuration, we identified the
preferred direction of motion for each neuron as the one that
elicited the greater response. Figure 3C, D shows the responses of
the population averaged after sorting by each neuron’s preferred
direction. After an initial rise in activity due to the appearance of
the RDM in the RF, the responses exhibited a direction-dependent
separation. Such modulation of LIP neuronal responses by motion
direction has been previously reported in naive monkeys (Fanini
and Assad, 2009). However, the direction-dependent modula-
tion was slightly stronger in our neural population (median DI:
0.11 and 0.09, respectively for our neurons and those reported by
Fanini and Assad, 2009; p � 0.06 rank-sum test; see Fig. 3E). We
also measured the degree of overlap between the responses to the
two directions of motion using an area under ROC metric (see
Materials and Methods). The mean area under ROC of our pop-
ulation (0.71) is comparable with the degree of overlap reported
for monkeys performing direction categorization tasks (0.72–
0.74) (Swaminathan and Freedman, 2012, their Fig. 3A). Our
neural population displays this degree of direction selectivity at a
lower motion strength (51.2% coherence) than that used in the
two studies being compared with (100% coherence). This result
is consistent with previous reports of stronger directional selec-
tivity in LIP neurons of monkeys trained on tasks that rely on
direction discrimination (Sarma et al., 2016).

We quantified the time course of the evolution of direction
selectivity at the highest motion strength (Fig. 3F) using an ROC
metric (see Materials and Methods). The responses to the two
motion directions were significantly different starting 190 ms
after the onset of dot stimulus (p � 0.05 on Wilcoxon rank sum
test). This is much later than the �50 ms latency of direction
selectivity observed in naive monkeys (Fanini and Assad, 2009).
This is also later than the �100 ms latency for direction category
selectivity reported in monkeys trained to categorize sets of
motion directions (Swaminathan and Freedman, 2012). As dis-
cussed below, the long latency in our neuronal pool may be an
indication that the directional responses we observed in the
RDM-in-RF configuration arise through a different mechanism

Table 2. Bounded diffusion model best fit parameter values (� SE)

Parameter
Monkey N
(Target-in-RF)

Monkey N
(RDM-in-RF)

Monkey B
(Target-in-RF)

Monkey B
(RDM-in-RF)

� 16.05 � 0.38 13.86 � 0.44 9.66 � 0.39 12.00 � 0.70
B0 0.72 � 0.02 0.78 � 0.02 0.52 � 0.02 0.47 � 0.04
Bdel 0.01 � 0.00 0.00 � 0.01 0.02 � 0.01 0.02 � 0.01
B2 0.67 � 0.09 0.97 � 0.08 1.16 � 0.21 1.26 � 0.38
tnd1 0.34 � 0.01 0.29 � 0.01 0.41 � 0.01 0.45 � 0.01
�tnd1 0.13 � 0.00 0.11 � 0.00 0.07 � 0.00 0.08 � 0.00
tnd2 0.38 � 0.01 0.32 � 0.01 0.47 � 0.01 0.43 � 0.01
�tnd2 0.12 � 0.00 0.12 � 0.00 0.07 � 0.00 0.06 � 0.00
C0 0.00 � 0.00 0.00 � 0.00 �0.02 � 0.00 0.02 � 0.01
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than the direction- and category-selective responses previously
reported in LIP.

The latency in the RDM-in-RF configuration lagged the direc-
tion selectivity seen in the same neurons in the Target-in-RF
configuration (180 ms, p � 10�3, bootstrap analysis). However,
the similarity of the latencies suggests that the RDM-in-RF pop-
ulation might also reflect the formation of the decision, as the
Target-in-RF population has been shown to do (Roitman and
Shadlen, 2002; Churchland et al., 2008). Consistent with this pos-
sibility, the rise and decline of neural activity depend on the
strength of the RDM (Fig. 3C, inset), albeit with a smaller dy-

namic range compared with responses in the Target-in-RF con-
figuration. In this configuration, directions are sorted based on
the preferred direction of each neuron. The coherence-dependent
ordering of responses could have been accentuated by this post
hoc procedure. To quantify this coherence dependence, for each
neuron and motion strength, we estimated the slope of the re-
sponses (buildup rate) in a 200 ms epoch beginning at the time of
response separation as identified in the preceding analysis. We
then characterized the relationship between motion strength and
buildup rates separately for the preferred and nonpreferred di-
rections of motion (Fig. 3G). The buildup rates of neurons in the

R
es

po
ns

e 
(s

p/
s)

20

40

60

80

Time before saccade (ms) 
-600 -400 -200 0

Time from RDM onset (ms) 
0 200 400 600

R
es

po
ns

e 
(s

p/
s)

20

40

60

80

100 ms

R
es

po
ns

e 
(s

p/
s)

-20

20

100 ms

R
es

po
ns

e 
(s

p/
s)

-20

20

Motion strength (% coherence)Time from RDM onset (ms)Direction selectivity index (DI)
0 20 40

B
ui

ld
up

 r
at

e 
(s

p/
s2 )

F
ra

ct
io

n 
of

 n
eu

ro
ns

-80

-40

0

40

80Target-in-RF 
Fanini & Assad (2009) 
Present study

RDM-in-RF 

Target-in-RF 

RDM-in-RF 

A 

C

B

D 

GFE

D
ire

ct
io

n 
se

le
ct

iv
ity

 (
A

re
a 

un
de

r 
R

O
C

)

0 200 400

0.1

0

0.2

0.7

0.6

0.5

0% 
Coherence 

3.2% 

12.8% 
6.4% 

25.6% 
51.2% 

0.1 0.3 >0.4

Figure 3. Neural population responses. Average response of the recorded neural population during Target-in-RF (A, B) and RDM-in-RF (C, D) configurations. A, C, Aligned to the onset of RDM and
including all trials sorted by direction and strength of motion. Solid and dashed lines indicate responses to positive and negative motion directions, respectively (for conventions on sign of direction,
see Experimental design and statistical analysis). Insets, Average of detrended responses (i.e., after subtraction of the mean response for all motion strengths, for each neuron). B, D, Aligned to the
saccade and including correct trials (and 0% coherence trials sorted by the animal’s choices). E, Histograms of the distribution of DI for the neural population recorded by Fanini and Assad (2009) and
for the neural population in the RDM-in-RF configuration of the present study. F, Area under ROC for responses to the two directions of motion at 51.2% coherence computed in 40 ms bins. Colored
lines at the bottom indicate the time bins in which this metric was significantly �0.5 for the corresponding configuration. G, The relation between the response buildup rate and motion strength.
Filled circles represent data from trials with motion in the neuron’s preferred direction. Open circles represent the opposite motion direction. Solid and dashed lines indicate corresponding linear
regression model fits. Population responses pooled separately for the 2 monkeys are shown in Figure 3-1 (available at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f3-1) and Figure 3-2
(available at https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f3-2).

Shushruth, Mazurek et al. • Decision Signals in LIP Sensory and Motor Responses J. Neurosci., July 11, 2018 • 38(28):6350 – 6365 • 6357

https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f3-1
https://doi.org/10.1523/JNEUROSCI.0668-18.2018.f3-2


Target-in-RF configuration showed a linear dependence on mo-
tion strength both when the motion direction was toward the RF
(1.5 � 0.2 spikes per s 2 per 1% coherence, p � 10�9) and when
the motion was away from the RF (�1.2 � 0.2, p � 10�5). A
similar trend was observed in the RDM-in-RF configuration.
However, this relationship was significant only for the nonpre-
ferred direction of motion (�0.7 � 0.2 spikes per s 2 per 1%
coherence, p � 0.002). For the preferred direction, the buildup
rates increased with coherence but not significantly so (0.6 � 0.4
spikes per s 2 per 1% coherence, p � 0.13). In both configurations,
these trends were preserved, even when the highest motion
strength trials were excluded. Thus, neuronal pools in LIP repre-
senting the saccade targets and the RDM both differentiate the
discriminanda during an epoch coinciding with decision forma-
tion. The buildup of neural activity depended on the strength of
the stimulus in both populations, but this dependence was
weaker when the RDM was in the RF.

We also compared the responses at the end of the decision
process for the two task configurations (Fig. 3B,D). When the
monkey chose the target in the neuron’s RF, the responses appear
to coalesce to a common firing rate just before the saccade, re-
gardless of motion strength (Fig. 3B, solid curves), as shown pre-
viously (Roitman and Shadlen, 2002; Churchland et al., 2008).
This pattern is thought to reflect a threshold level detected by
another circuit to terminate the decision (Hanes and Schall, 1996;
Mazurek et al., 2003; Hanks et al., 2014). When the same neurons
contained the RDM in their RF, the responses to the different
coherences remained separated until the saccade, and this held
for either choice (Fig. 3D). This was also the case when the RF
contained the unchosen target (Fig. 3B, dashed curves). Thus,
only the responses of the pool representing the target chosen by
the animal contains a possible neural signature of decision termi-
nation. In the ensuing sections, we support this qualitative obser-
vation with other lines of evidence that show that this pool alone
signals decision termination and the time taken to reach it.

Correlation between neural responses and behavior
We examined whether the neural responses in the two stimulus
configurations were predictive of the monkey’s decisions. Specif-
ically, we asked whether the trial to trial variation in the responses
correlates with the trial to trial variation in the monkey’s choice
behavior. To test this for each neuron, we counted the spikes in a

200-ms-long epoch ending 100 ms before saccade initiation on
each trial and incorporated this count in a logistic regression
model of choice (GLM; see Materials and Methods). To facilitate
comparison across the two stimulus configurations, we standard-
ized the responses across trials of each configuration. We in-
cluded the strength and direction of the presented stimulus as
confounders, thus asking whether the variation in neural response
tells us more about the upcoming choice than can be ascertained
from the stimulus itself. This was indeed the case for 61.2% of cells in
the Target-in-RF configuration and for 35.4% of cells in the
RDM-in-RF configuration (30 of 49 and 17 of 48 cells, respec-
tively; Eq. 5, H0: �2 � 0; p � 0.05; Fig. 4A). The leverage of the
neural activity on choice was significantly stronger in the Target-
in-RF configuration (p � 0.005, signed rank test).

In a complementary analysis, we assessed whether the neural
responses on ambiguous trials (0% motion coherence) differed
according to the eventual choice of the animal. We computed CP
(Britten et al., 1996), a nonparametric statistic that quantifies the
overlap between the distributions of responses of the neuron
accompanying the two choices (see Materials and Methods). A
CP of 0.5 indicates that the two distributions are completely over-
lapping and therefore uninformative about the ensuing choice.
At the single neuron level, CP of 32.4% and 25.8% of the neurons
was significantly different from 0.5 in the Target-in-RF and
RDM-in-RF configurations, respectively (12 of 37 and 8 of 31
cells with at least 10 trials at 0% coherence, respectively, p � 0.05,
permutation test). In both stimulus configurations, the mean CP
of the neuronal population was significantly �0.5 (Fig. 4B, pop-
ulation mean � SEM of 0.66 � 0.03 and 0.59 � 0.04 for Target-
in-RF and RDM-in-RF, respectively; p � 10�5 and p � 0.02 on t
test). For comparison between the two configurations, we calcu-
lated “grand” CP from standardized responses of all neurons on
the 0% coherence trials (see Materials and Methods) (Britten et
al., 1996). This CP was significantly stronger in the Target-in-RF
configuration (0.65 vs 0.56, p � 10�3, permutation test). From
the analyses of CP and firing rate leverage on choice (Fig. 4A,B),
we adduce that LIP neurons responsive to both the RDM and the
choice targets are informative about the choice, but it is the latter
set of neurons (Target-in-RF) that covary more strongly with
choice.

Finally, because the neurons exhibit time-dependent changes
in their activity in both stimulus configurations, we asked whether
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the variation of the buildup rates were predictive of the variation in
the RTs on a trial-by-trial basis. We used the trials in which the
monkey chose the target in the RF or the target consistent with
the direction of motion preferred by the neuron (RDM-in-RF).
For a majority of neurons recorded in the Target-in-RF configu-
ration (36 of 49), the RTs were inversely correlated with the slope
of the neural responses (population mean: �0.08, p � 0.01). In
the RDM-in-RF configuration, the correlation was not signifi-
cantly different from 0 (mean: 0.03, p � 0.33) (Fig. 4C) and
significantly weaker than the correlations seen in the Target-
in-RF configuration (p � 0.01, Kolmogorov–Smirnov test). This
comparison suggests that only the pool of neurons that contain
the chosen target in their RF carries information about the time
the animal will take to report its decision.

Signatures of noisy evidence accumulation in the
response variance
We also wished to ascertain whether the responses on single trials
conform to the expectations of noisy evidence accumulation. If
so, the variance of the firing rates across trials should increase
linearly as a function of time (i.e., the number of samples accu-
mulated). Also, the autocorrelation between firing rates at differ-
ent times within a trial should conform to the pattern associated
with the cumulative sum of random numbers. Such correlation
should decay as a function of separation in time from the first
sample and increase for equidistant samples as a function of time
from the onset of accumulation (see Materials and Methods). We
used the method developed by de Lafuente et al. (2015), based on
Churchland et al. (2011), to estimate these quantities.

The variance and autocorrelation patterns varied markedly
based on whether the neurons contained the target or the RDM
in their RF. In the Target-in-RF configuration, the variance in-
creased linearly with time during the same epoch that the mean
firing rates seemed to reflect the integration of evidence (Fig. 5A,

shaded region). In the RDM-in-RF configuration, the rise in vari-
ance was significantly weaker (p � 10�10, bootstrap analysis).
Also, the observed autocorrelation matrix for the responses in the
Target-in-RF configuration (Fig. 6B,D,F) resembled the theoret-
ical prediction (R 2 � 0.88). In contrast, the pattern of autocor-
relations (Fig. 6C, E, G) for the responses in the RDM-in-RF
configuration diverged markedly from the predicted pattern
(R 2 � 0.2). A bootstrap analysis confirmed that the difference in
R 2 values between the two configurations was statistically reliable
(p � 10�10; see Materials and Methods). Later, we show that the
deviation of the autocorrelation pattern from theoretical predic-
tion cannot be attributed to a muted drift diffusion process un-
folding on the background of a strong nondirectional sensory
response (see Fig. 9).

The variance of the neural response also affords a more re-
fined examination of the mechanism of decision termination.
The firing rate averages in Figure 3B suggest the possibility that
decisions terminate when the firing rate of the neurons with the
chosen target in their RF reach a threshold. A more stringent test
of a threshold is that, even for the same motion strength, the
variance of the neural response should approach a minimum just
before the saccade. Indeed, we observed a precipitous decline in
the variance in the �100 ms preceding the saccade for the neu-
ronal pool with the chosen target in the RF (Fig. 5B, solid blue
line). The variance in the time bin preceding the saccade was
significantly lower than the variance in its prior time bin (p �
0.01, t test). This decline in variance was more precipitous than
that seen for the other three conditions shown in Figure 5B
(ANOVA, p � 0.03; see Materials and Methods).

Together, the analyses of time-dependent variance and auto-
correlation reveal that neurons in the Target-in-RF configuration
exhibit firing rate patterns consistent with a process that repre-
sents the running sum of noisy samples of evidence to a criterion
level. The analyses complement the observations made earlier on
the mean firing rates by demonstrating conformance with the
second-order statistics of diffusion to a bound. These features
were less apparent when the same neurons were studied in the
RDM-in-RF configuration. This neural population does not ap-
pear to represent the accumulation of the noisy evidence that
supports the monkey’s decisions. They reflect the direction of
motion during the time course of decision formation but not the
state of the accumulated evidence that can be used to terminate
the decision process. We next consider a possible account of their
pattern of activity.

A model of interaction between populations
How could the responses of neurons with the RDM in their RF
correlate with the decision outcome without representing the
process of evidence accumulation? One possibility is that the
weaker decision-related signals observed in the population with
the RDM in their RF are inherited from the populations that have
the choice targets in their RF and are involved in the accumula-
tion process. It has been shown that responses of LIP neurons to
visual stimuli are suppressed by concurrently presented visual stim-
uli when they are well outside the RF (Balan et al., 2008; Churchland
et al., 2008), even by as much as 50° visual angle (Falkner et al., 2010;
Louie et al., 2011). An asymmetrical influence of the two Target-
in-RF populations could lead to the appearance of direction
selectivity and a correlation with the animal’s choices in the
RDM-in-RF population. Moreover, the noise added through this
additional step could explain the divergence of the variance and
autocorrelation of the RDM-in-RF population from the theoret-
ical predictions of a diffusion process. Additionally, such an extra
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step could account for the timing of direc-
tion selectivity in the RDM-in-RF popula-
tion, which lags slightly behind that of the
Target-in-RF population.

To evaluate the plausibility of this idea,
we simulated the responses of three neural
populations (one representing the motion
stimulus and two representing the choice
targets) during the motion viewing epoch
(Fig. 7A). In the model, the RDM-in-RF
population receives direct excitation from
the visual representation of the dynamic
random dots. This direct excitation fur-
nishes a constant firing rate that varies
from trial to trial, but importantly, is not
direction-selective (Fig. 7C). The two
Target-in-RF populations start off at a
steady firing rate, simulating the steady-
state sensory response to the target already
present in the RF. The responses then fol-
low drift diffusion dynamics starting at 180
ms, simulating evidence accumulation. The
drift rate was set to be directly or inversely
proportional to motion coherence for the
populations representing the correct and in-
correct targets, respectively (Fig. 7B).

The three populations interact through
divisive suppression (Sceniak et al., 2001;
Carandini and Heeger, 2011; Louie et al.,
2011) at each time point, parameterized
by the � terms in Equation 9 (see Materi-
als and Methods). We set these parame-
ters to approximate the observed neural
responses to the 25.6% motion strength
RDM (illustrated in Fig. 7F,G). We as-
sumed that the early dip in the response of
the Target-in-RF neurons (Fig. 7F, arrow)
was caused by suppression from the neu-
rons activated by the appearance of the
RDM (�DT1 � �DT2) (Bollimunta and Dit-
terich, 2012). The suppression between the
two Target-in-RF pools (�T1T2 � �T2T1)
was estimated from the onset and steady-
state responses after the appearance of the
target in the RF. Suppression of the RDM-
in-RF pool from the Target-in-RF pools
(�T1D and �T2D) was adjusted around
�DT to approximate the separation in fir-
ing rate traces shown in Figure 7G (see
Materials and Methods). Such asymmet-
ric influence of the two Target-in-RF pop-
ulations might arise from differences in
their spatial relationship (neuronal con-
nectivity) with the RDM-in-RF population. These adjustments
were sufficient to mimic the observed mean responses of the
neural population in our simulations (Fig. 7D,E). In addition, we
assumed that the suppressive interaction signals were corrupted
by a small amount of noise (see Materials and Methods). Impor-
tantly, according to the model, the direction selectivity of the
RDM-in-RF population is derived solely from the suppressive
inputs from the Target-in-RF populations.

This simple model reproduced the main features of our results
(Fig. 8). After the implementation of suppression, the Target-

in-RF population retained the time course of the variance and the
pattern of autocorrelation expected of a diffusion process. Notably,
the variance and autocorrelation in the RDM-in-RF population also
conformed to the patterns in the neural data: (1) the attenuated
increase in variance as a function of time; and (2) the divergence
in the pattern of autocorrelation from the theoretical prediction
of diffusion. We also considered an alternative model in which
the RDM-in-RF population itself represents an attenuated evi-
dence accumulation signal in parallel with the Target-in-RF pop-
ulations (Fig. 9). To do this, we removed the lateral interactions
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and implemented the accumulation identically to the Target-
in-RF population, but matching the observed firing rate dynam-
ics and variance in the RDM-in-RF data (displayed in Figs. 7G
and 5A, respectively). This model was significantly worse in ac-
counting for the pattern of autocorrelation observed in the data
(�BIC � 5 � 103). We thus favor the model with divisive suppres-
sion, which accounts for the presence of choice related activity in the
RDM-in-RF population and the absence of clear signs of noisy evi-
dence accumulation.

Discussion
We compared decision-related activity in the sensory and motor-
planning responses of LIP neurons. We conclude that the process
of evidence accumulation leading to choice is revealed primarily
in motor preparatory responses. The sensory responses exhibit a
weak relationship with the animal’s behavior, but our results and
simulations suggest that this relationship is likely inherited from
the motor preparatory responses. We first discuss our results in
the context of previous studies of area LIP and then consider their
implication on the broader question of routing of information in
the cortex.

Properties of neural responses in area LIP
There has been a long debate about the relative importance of
sensory salience-related signals and saccade preparatory signals
in area LIP (Bushnell et al., 1981; Barash et al., 1991a; Colby and
Goldberg, 1999; Andersen and Buneo, 2002). Many neurons show
inherent selectivity for visual features, such as direction and shape, even
in monkeys that have never been trained to use such information
(Sereno and Maunsell, 1998; Fanini and Assad, 2009). In addi-
tion, training induces stimulus selectivity that can be distinct from
intrinsic selectivity (Toth and Assad, 2002; Sarma et al., 2016). LIP
neurons also carry a rich representation of saccade plans. They
display spatially selective persistent activity when the animal
plans a saccade to a previously instructed, but no longer visible

target (Gnadt and Andersen, 1988; Barash et al., 1991a). This
persistent activity is dissociable from the sensory response evoked
by the target (Mazzoni et al., 1996) and can encode other factors
that bear on the saccade plan, such as the probability that a sac-
cade will be instructed (Janssen and Shadlen, 2005) and the ex-
pected reward (Platt and Glimcher, 1999; Sugrue et al., 2004).
The richness of saccadic planning is particularly evident in per-
ceptual decision-making tasks, where the neuronal activity con-
tinually tracks the current state of the evidence for choosing the
target in the neuron’s RF (Mazurek et al., 2003; Bollimunta et al.,
2012).

By recording from the same LIP neurons when they belonged
to the population representing either the RDM or a choice target,
we could directly compare the sensory- and saccade-related re-
sponses. While both populations modulated their activity in ac-
cordance with the strength and direction of the RDM, there were
important differences. This modulation was more intense when a
choice target was in the RF. While the RDM elicited a strong
response when it was in the RF, the dependence on direction and
stimulus strength was weaker. This is unlikely to be explained by
saturation of the response because the same neurons attained
higher firing rates before saccade onset when the target was in the
RF (compare Fig. 3B and Fig. 3C). Further, the variance and
autocorrelation patterns of the neuronal responses were consis-
tent with the predictions of noisy evidence accumulation only
when the neurons contained a target in their RF. Finally, a neural
correlate of decision termination was only apparent when a target
was in the RF.

Although we have used the term “sensory” to describe the
direction-selective responses of neurons with the RDM in their
RF, the gradual buildup of the firing rates of these neurons (Fig.
3C) differed from the constant firing rates reported in naive mon-
keys (Fanini and Assad, 2009). Moreover, it is known that the
selectivity of LIP neurons to features of visual stimuli is mutable
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and is influenced by the training history of the animal and/or task
demands (Toth and Assad, 2002; Sarma et al., 2016). We suspect
that the responses are not sensory in the way one would charac-
terize the responses of neurons in visual areas MT/MST or even
the visual responses of LIP neurons to transient stimuli (e.g., targets)
as they were remarkably slow, emerging 190 ms after stimulus onset
(at the highest coherence). This is far later than the �50 ms
latency of direction selectivity (Fanini and Assad, 2009) and the
�100 ms latency for direction-category selectivity (Swaminathan
and Freedman, 2012), and it is longer than the 180 ms latency of
decision-related signals observed in the neuronal pool represent-
ing the targets.

Together, these considerations suggest that the neuronal pool
representing the RDM inherits its direction and choice-related
signals from the neuronal pools representing the targets. We dem-
onstrated that a model of lateral interactions serving the general
purpose of gain control (Carandini and Heeger, 2011) is suffi-
cient to produce these effects. Such lateral interactions are well
established in upstream visual areas (Schein and Desimone, 1990;

Shushruth et al., 2009; Hunter and Born, 2011). In LIP, lateral
interactions are thought to mediate the suppressive effect of vi-
sual stimuli presented outside a neuron’s RF (Balan et al., 2008;
Churchland et al., 2008; Zhang et al., 2017), even from distances
�50° away from the RF (Falkner et al., 2010; Louie et al., 2011). A
limitation of the present study is that we do not have access to two
classes of neurons on the same trials. Recording simultaneously
from neurons that represent the RDM and at least one choice
target would allow for a direct test of the lateral interactions that
we modeled. For example, we would predict that the weaker le-
verage of the RDM-in-RF neurons would be explained away (i.e.,
mediated) by inclusion of Target-in-RF responses in the same
GLM.

Routing of information in cortex
We do not know how the momentary evidence represented by
populations of direction-selective neurons in the visual cortex
makes its way specifically to the target-representing neurons in
LIP. There are projections from areas MT and MST to area LIP,
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but it is difficult to reconcile this direct pathway with the long
latency of the decision-related activity in LIP. The delay of the
decision-related responses relative to the latency of the visual re-
sponses in LIP (�50 ms) suggests a role for some form of memory
buffer and/or a multisynaptic chain through which decision-
relevant information must pass before reaching the saccade plan-
ning neurons in LIP. This is one reason to suspect that apparently
simple perceptual decisions may share similarities with more
complex decisions that derive evidence from memory and other
evaluations (Shadlen and Shohamy, 2016).

We must emphasize that area LIP is not the only region that
receives decision-pertinent signals in this task. Other areas in-
volved in the planning of eye movements, such as FEF/area 46,
caudate nucleus, and superior colliculus, also have access to such
input (Horwitz and Newsome, 1999; Kim and Shadlen, 1999;
Ding and Gold, 2010, 2012; Mante et al., 2013). However, the
decision-related activity in these areas arises with comparable
latencies, so they do not furnish an explanation for the long la-
tency in LIP. We favor the idea that the latency is necessitated by
limitations in connectivity between the many possible sources of
evidence bearing on the salience of an item and the neurons that
represent such items as potential affordances to the motor sys-
tem. This connectivity constraint might necessitate active routing
(Olshausen et al., 1993; Kastner and Pinsk, 2004), although this
process is poorly understood.

In monkeys trained to assign motion directions to arbitrary
categories, LIP neurons have been shown to reflect the learnt
categorical identities (Freedman and Assad, 2006; Swaminathan
and Freedman, 2012). Before our experiment, it seemed possible
that the neurons with the RDM in RF could have manifested such
a categorical response to inform the Target-in-RF neurons of the
decision. Our findings render this unlikely. The RDM-in-RF
neurons do not exhibit signs of evidence accumulation, and their
directional responses likely arise as a consequence of the inheritance
of a decision variable represented by the Target-in-RF neurons.
Thus, we suspect the directional responses of the RDM-in-RF neu-
rons differ from category identity signals, but we are not proposing
an account of their features. There are many differences in task,
training, and the signals themselves (e.g., latency), which could ex-
plain the differences between category identity responses and the
directional responses of our RDM-in-RF configuration.

If the neurons with the RDM in the RF in our task do not
represent the evolving evidence, a natural question is what do
these neurons signify? One obvious possibility is that they simply
represent an object that might attract the gaze, as transient lights
are wont to do. Another possibility is that they represent the focus
of spatial attention (Colby and Goldberg, 1999). However, this
focus should be initially on the RDM and then either remain
stationary through the decision or gradually give way to the cho-
sen target. This is inconsistent with the dynamics observed in our
data, which look like a muted version of the decision-related
signals exhibited by neurons with a choice target in the RF. The
same objection applies to the proposal that these neurons repre-
sent the salience of the RDM (Bisley and Goldberg, 2010). A more
speculative idea is that the neurons that contain the RDM in their
RF confer information bearing on the spatial origins of the evi-
dence: that is, they help to bind the location of the thing we are
deciding about to the decision itself, which is about what to do.
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